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INTRODUCTION
A crucial step in the colonization of terrestrial habitats has been the
evolution of specialized respiratory organs that allow efficient gas
exchange and minimize water loss. The main respiratory organs in
insects are the tracheae, comprising a network of tubes that bring air
deep into the body (Snodgrass, 1935; Mill, 1985). In Drosophila, as
in other insects, the tracheal system is a complex tubular network
that arises from the tracheal placodes, clusters of ectodermal cells
that appear on either side of thoracic and abdominal embryonic
segments. Tracheal cells are specified by the activity of a set of
‘tracheal inducer genes’ that includes the transcription factors
trachealess (trh) and ventral veinless (vvl), whose expression is
controlled by genes that specify positional cues along the embryonic
body axes (Isaac and Andrew, 1996; Wilk et al., 1996; Boube et al.,
2000). The cells of each cluster invaginate and migrate in a
stereotypic pattern to form each of the primary tracheal branches
(Manning and Krasnow, 1993).

In recent years, many of the genes that are required for the
specification of the tracheal cells have been identified (Ghabrial et
al., 2003). However, not much attention has been given to the
evolutionary origin of these cells. It is believed that in the common
ancestors of all arthropods, specialised parts of appendages had a
major role in respiration and osmoregulation, acting as gills (Brusca
and Brusca, 1990; Budd, 1996). Indeed, this close association
between respiratory organs and appendages is maintained currently
in many crustaceans, which are the closest living relatives of insects
(Regier and Shultz, 1997; Boore et al., 1998; Mallatt et al., 2004).

To investigate the origin of tracheal cells, we have asked whether
these may also arise in association with the cells that give rise to
appendages in a present day insect like Drosophila. We have found
that indeed the tracheal placodes and leg primordia arise from a
common pool of cells in Drosophila, and that the decision between
these two fates is controlled by the activity of the wingless signalling
pathway. By manipulating the genetic program that controls leg
specification, we have been able to show that, even in the abdomen,
tracheal primordia develop in close association with cryptic
appendage primordia. These results point to a close relationship
between the tracheal and leg fates, and suggest some interesting
similarities with the appendage-associated gills of aquatic
crustaceans. To investigate these similarities further, we have cloned
homologues of the tracheal inducer genes and studied their
expression patterns in two divergent groups of crustaceans. We argue
that crustacean gills and insect tracheae, hitherto considered to be
independent systems for gas exchange, may share a number of
features in their developmental origin and specification.

MATERIALS AND METHODS
Fly strains
We have used wgCX4 as a wg null allele. The 1-eve-1 line (Perrimon et al.,
1991) is a lacZ insertion in the trh gene. Expression of btd and Dll was
induced with the UAS/GAL4 system (Brand and Perrimon, 1993), using a
UAS-btd line (Schock et al., 1999) and a UAS-Dll line (Gorfinkiel and
Guerrero, 1997), and a btd-Gal4 line as a driver (Estella et al., 2003). To
induce ectopic expression of wg, we used a nullo-Gal4 (from W. Gehring,
Basel, Switzerland) and a UASwg line (Lawrence et al., 1995). We used ptc-
GAL4 (Speicher et al., 1994) to drive the expression of UAS-TCFDN (van
de Wetering et al., 1997) and UAS-Arm* (Pai et al., 1997) in Drosophila
embryos.

Drosophila immunostaining and in situ hybridisation
We used the following primary antibodies: a mAb2A12 monoclonal
antibody (1:5-1:10, from the Developmental Studies Hybridoma Bank,
University of Iowa), which recognises an epitope from the lumen of the
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tracheal tree, and an antibody specific for �-gal (Cappel, 1:2000). Embryos
were stained according to standard protocols using the Vectastain Elite ABC
kit. For immunofluorescence, we used secondary antibodies Alexa488-
conjugated goat anti-rabbit (1:200) and Alexa594-conjugated goat anti-
mouse (1:200), both from Molecular Probes. Whole-mount in situ
hybridisation was carried out with trh and btd anti-sense RNA probes,
following the method of Tautz and Pfeifle (Tautz and Pfeifle, 1989), with
minor modifications. For immunofluorescence, we used trh anti-sense RNA
probes following the procedure described by Wilkie and Davis (Wilkie and
Davis, 1998). For antibody labelling followed by in situ hybridisation, we
followed the procedure described by Manoukian and Krause (Manoukian
and Krause, 1992). Photographs were taken using Nomarski optics or a SP1
Leica confocal microscope.

Preparation of embryonic cuticle
For the analysis of embryonic cuticle, late embryos were removed from the
chorion and vitelline membrane, and mounted in a mixture of Hoyer’s
medium (van der Meer, 1977) and lactic acid (1:1).

Artemia, Parhyale and crayfish immunostaining and in situ
hybridisation
We initially cloned a fragment of vvl from Artemia, by PCR from cDNA
generated from larval RNA with degenerated oligonucleotides designed
from the Drosophila vvl sequence. An antibody against the Vvl protein of
Artemia was generated by injecting rabbits with a His-tagged fragment of
the Vvl protein [amino acids 241 to 386 of the previously published
sequence (Chavez et al., 1999)]. The serum was then affinity purified on a
nickel column. We initially cloned a fragment of vvl and trh from Parhyale
hawaiensis by PCR from a cDNA library kindly provided by Nipam Patel
(University of California, Berkeley), with degenerated oligonucleotides
designed from the Drosophila vvl and trh sequences. We obtained a 240 bp
fragment of the Parhyale vvl gene that we used to clone the full-length
cDNA from the library. We also obtained a Parhyale trh fragment of around
700 bp that encompasses the region of the HLH, the PAS-1 and the PAS-2
domains (corresponding to amino acids 100 to 550 in Drosophila). In situ
hybridization in Parhyale was carried out using a protocol provided by
Nipam Patel; the protocol is available upon request. For immunostaining in
crayfish embryos, we used the 4D9 monoclonal antibody for Engrailed
(Patel et al., 1989) and a polyclonal antibody for Nub/Pdm (Averof and
Cohen, 1997). Immunohistochemical staining was carried out as described
by Patel (Patel, 1994).

RESULTS AND DISCUSSION
Tracheal placodes arise in close proximity to the
leg primordia in Drosophila
The Drosophila tracheal system has a clearly metameric origin,
arising from clusters of cells, on either side of each thoracic and
abdominal segment, that express the tracheal inducer genes
trachealess (trh) and ventral veinless (vvl) (de Celis et al., 1995;
Isaac and Andrew, 1996; Wilk et al., 1996) (Fig. 1B). Conversely,
the leg precursors can be recognized as clusters of cells that express
the Distal-less (Dll) gene, on either side of each thoracic segment;
these will give rise both to the Keilin’s Organs (KOs, the
rudimentary legs of the larvae) and to the three pairs of imaginal
discs that will give rise to the legs of the adult fly (Cohen, 1993).

To investigate whether there is a direct physical association
between the leg and tracheal primordia, we examined Drosophila
embryos co-stained for the expression of trh and early markers of
leg primordia. Although Dll is one of the most commonly used
markers for the leg primordia, it is not the earliest gene required for
their specification. Instead, a couple of related and apparently
redundant genes, buttonhead (btd) and Sp1, act upstream of Dll in
the specification of these primordia (Estella et al., 2003). Examining
the specification of tracheal cells with respect to btd expression, we
observe that tracheal cells appear in close apposition to btd-
expressing cells, from the earliest stages of their appearance (by

stage 9/early stage 10, Fig. 1E,F). Interestingly, unlike Dll, btd is
initially expressed both in the thoracic and abdominal segments, and
its expression is restricted to the thoracic segments later, under the
influence of the BX-C genes (Estella et al., 2003). Thus, the cells of
the respiratory system in Drosophila always arise in close proximity
to the cells that are fated to give rise to the legs.

Induction of Keilin’s organs in the abdomen:
tracheal primordia are associated with cryptic
appendage primordia in the abdominal segments
To fully endorse this conclusion it is necessary to show that the btd-
expressing cells in the abdomen correspond to cryptic leg primordia.
This may be a key point because, although many of the genes
required for leg development are already known, it has not yet been
possible to induce leg development in abdominal segments (except
by transforming these segments into thoracic ones). In particular,
although the Dll promoter contains BX-C binding sites that repress
its expression in the abdominal segments (Vachon et al., 1992), no
ectopic appendage has been reported by misexpressing Dll in the
abdomen. These observations have lead to some doubts as to
whether a leg developmental program is at all compatible with
abdominal segmental identity.

As the initial expression of btd in the abdominal segments is
downregulated by the BX-C genes, we reasoned that sustained
expression of btd might overcome the repressive effect of the BX-
C genes and force the induction of leg structures in the abdomen.
To test this, we used a btd-GAL4 driver to drive btd expression,
expecting that the perdurance of the GAL4/UAS system would
ensure a more persistent expression of btd in its endogenous
expression domain. We never obtained any sign of ectopic Dll
expression or KOs in the abdominal segments, but we observed
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Fig. 1. Drosophila tracheal and leg primordia derive from closely
associated populations of cells. (A) The Drosophila tracheal system
visualized by the 2A12 antibody. (B) The tracheal system arises from 10
tracheal placodes (arrowheads on first and last placode) that express
the trh gene; trh is also expressed in the salivary glands (sg). (C) Staining
for trh in the tracheal placodes, and Dll in cephalic structures and leg
primordia (arrows) in a stage 11 embryo. (D) Higher magnification view,
showing the proximity of thoracic tracheal placodes and leg primordia.
(E) Staining for trh expression (by means of an enhancer trap insertion
in the gene) and btd expression in a stage 9/10 embryo. (F) Higher
magnification view, showing the close apposition of trh- and btd-
expressing cells.
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that the increased expression of btd had an effect on the KOs of
the thoracic segments, which had more sensory hairs than the
three normally found in wild-type KOs (Fig. 2F). Thus, on its
own, btd seems unable to overcome BX-C repression of leg
development.

One possibility would be that the BX-C genes could suppress
appendage development in the abdomen by independently
repressing both btd and Dll in this region. To assess this possibility,
we used the same btd-GAL4 driver to simultaneously induce the
expression of both btd and Dll. Under these circumstances, we
observe that KOs develop in otherwise normal abdominal segments
(Fig. 2B,D,G); as in the previous experiment, the newly formed KOs
have more than three sensory hairs. These results suggest that
expression of btd and Dll in the btd-expressing abdominal primordia
is sufficient to induce the development of leg structures in the
abdomen, overcoming the repressive effect of the BX-C genes.
Furthermore, these results demonstrate that these clusters of btd-
expressing cells in the abdomen are indeed cryptic leg primordia.
These results clearly show that tracheal cells are specified in close
proximity to the leg primordia, in both thoracic and abdominal
segments.

A leg-tracheal equivalence group: wingless
signalling provides a genetic switch for the
specification of leg versus tracheal fate
Previous results have shown that the leg primordia are specified
straddling the segmental stripes of wingless (wg) expression in the
early embryonic ectoderm (Cohen et al., 1993), whereas tracheal
cells are specified in between these stripes (de Celis et al., 1995).
To investigate whether wg might play a role in determining the fate
of these primordia, we studied what happens when the normal
pattern of wg expression is disrupted. We find that, in wg mutant
embryos, trh and vvl from the earliest stages of their expression are
no longer restricted to separate clusters of cells; instead larger
patches of expression add up to a continuous band of cells running
along the anteroposterior axis of the embryo (Fig. 3C) (de Celis et
al., 1995), while btd expression is suppressed in this part of the
embryonic ectoderm (Fig. 3D) (Estella et al., 2003). Conversely,
ubiquitous expression of wg suppresses trh expression (Fig. 3E),

while causing an expansion of btd expression along the embryo
(Fig. 3F,L). Restricted activation or inactivation of the wg pathway
by the expression of a constitutive form of armadillo or a
dominant-negative form of dTCF, respectively, are also able to
specifically induce or repress trh and btd expression (Fig. 3G-J).
trh/vvl and btd seem to respond independently to wg signalling and
there is no sign of cross-regulation among them, as btd expression
is normal in trh vvl double mutants, and trh and vvl expression is
normal in mutants for a deficiency uncovering btd and Sp1 (data
not shown).

The role of wg as a repressor of the tracheal fate is further
illustrated by looking at the behaviour of transformed cells: the
clusters of cells that have lost btd expression and gained trh and vvl
expression in wg mutant embryos begin a process of invagination
that is characteristic of tracheal cells (Fig. 3K). Furthermore, these
cells also express the dof (stumps – FlyBase) gene, a target gene of
both trh and vvl in the tracheal cells (Boube et al., 2000) (data not
shown). Although further development of these cells is hard to
ascertain because of gross abnormalities in wg– embryos, these
results indicate that they have been specified as tracheal cells.
Thus, wg appears to act as a genetic switch that decides between
two mutually exclusive fates in this part of the embryonic
ectoderm: the tracheal fate, which is followed in the absence of wg
signalling; and the leg fate, which is followed upon activation of
the wg pathway (Fig. 3M). Given that there are no cell lineage
restrictions setting apart the cells of the tracheal and leg primordia
(Meise and Janning, 1993), these two cell populations could be
considered as a single equivalence group, with the differences in
their fate controlled by the activation state of the wg signalling
pathway.

Crustacean homologues of tracheal inducer genes
are expressed in appendage-associated gills
A link between respiratory organs and appendages is also found in
many primitively aquatic arthropods, like crustaceans, where gills
typically develop as distinct dorsal branches (or lobes) of
appendages called epipods (Brusca and Brusca, 1990). Following
our observations, which suggest a link between respiratory organs
and appendages in Drosophila, we decided to examine whether
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Fig. 2. Induction of leg structures in the
Drosophila larval abdomen. (A) Lateral view
of a wild-type first instar larval cuticle. Arrows
point to Keilin’s Organs (KOs), the rudimentary
larval legs that appear in the thoracic
segments. (B) Ventral view of a cuticle upon
ectopic expression in the abdomen of Dll and
btd. Arrows point to KOs that develop in
otherwise normal abdominal segments.
(C) Detail of A showing a wild-type thoracic KO
(arrows). (D) Detail of B, showing the KO
developing in abdominal segments (arrows;
abdominal segments 4 and 5; more than 85%
of the scored abdominal hemisegments show
these KOs; n=20 embryos). (E) High
magnification of a wild-type KO. (F) High
magnification of a thoracic KO upon btd
overexpression. (G) High magnification of an
abdominal KO upon btd and Dll
overexpression. KOs upon btd overexpression
have more than the three hairs seen in the wild
type. (H) Scheme of the proposed interactions
giving rise to appendage primordia.
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further similarities could be found between insect tracheal cells and
crustacean gills. Specifically, we considered whether homologues of
the tracheal inducing genes might have a role in the development of
appendage-associated gills in crustaceans.

We used RT-PCR to clone fragments of the vvl and trh homologues
from Artemia franciscana and from Parhyale hawaiensis,
representing two major divergent groups of crustaceans (members of
the branchiopod and malacostracan crustaceans, respectively). In the
case of Artemia vvl, we cloned a fragment that corresponds to the
APH-1 gene previously reported by Chavez et al. (Chavez et al.,
1999) and generated an antibody for immunochemical staining in
developing Artemia larvae. We observe that Artemia Vvl is initially
absent from early limb buds; it becomes weakly and uniformly
expressed while the limb is developing its characteristic branching
morphology, and becomes strongly upregulated in one of the epipods
as its cells begin to differentiate (Fig. 4A,B). Uniform weak
expression persists in mature limbs, but expression levels in the
epipod are always significantly higher. The trh homologue from
Artemia has previously been studied by Mitchell and Crews (Mitchell
and Crews, 2002), and its expression appears to be restricted to the
same epipod as Vvl. Similarly, we have cloned homologues of vvl
and trh from Parhyale hawaiensis and have studied their expression
by in situ hybridization. Both genes are specifically expressed in the
epipods of developing thoracic appendages (Fig. 4C-E). Besides
epipods, the Artemia trh and vvl homologues are also expressed in
the larval salt gland, an organ with osmoregulatory functions during
early larval stages of Artemia development (Chavez et al., 1999;
Mitchell and Crews, 2002).

Implications for the origin of insect tracheal
systems
What is the significance of the two Drosophila tracheal inducer
genes being specifically expressed in crustacean epipods/gills? One
possibility is that the expression of these two genes was acquired
independently in insect tracheae and in crustacean gills.
Alternatively, tracheal systems and gills may have inherited these
expression patterns from a common evolutionary precursor, perhaps
a respiratory/osmoregulatory structure that was already present in
the common ancestors of crustaceans and insects.

The latter possibility is considered unlikely by conventional views,
because of the structural differences between gills and tracheae
(external versus internal organs, discrete segmental organs versus
fused network of tubes), and the difficulty to conceive a smooth
transition between these structures. Yet, analogous transformations
have occurred during arthropod evolution: tracheae can be organized
as large interconnected networks or as isolated entities in each
segment (as in some apterygote insects), invagination of external
respiratory structures is well documented among groups that have
made the transition from aquatic to terrestrial environments (terrestrial
crustaceans, spiders and scorpions), and conversely evagination of
respiratory surfaces is common in animals that have returned to an
aquatic environment (tracheal gills or blood gills in aquatic insect
larvae) (Snodgrass, 1935; Mill, 1985; Brusca and Brusca, 1990). A
very similar (but independent) evolutionary transition is, in fact,
thought to have occurred in arachnids, where gills have been
internalised to give rise to book lungs, and these in turn have been
modified to give rise to tracheae in some groups of spiders (Lankester,
1885; Purcell, 1910; Damen et al., 2002). Thus, a relationship between
insect tracheae and crustacean gills is plausible.

A particular type of epipod/gill has also been proposed as the
origin of insect wings (Wigglesworth, 1976; Kukalova-Peck, 1983),
a hypothesis that has received support from the specific expression
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Fig. 3. wg signalling provides a genetic switch for the
specification of leg versus tracheal primordia. (A,B) Wild-type
expression pattern of trh in the salivary glands and tracheal placodes,
and of btd in cephalic segments and cell clusters in thoracic and
abdominal segments. (C,D) In a wg mutant, trh expression is expanded
along the anteroposterior axis, whereas btd expression is abolished in
the thoracic and abdominal segments. (E,F) Conversely, upon ectopic
expression of wg, trh expression in the tracheal placodes is suppressed
and btd expression is expanded. (G,H) Restricted ectopic activation of
the wg pathway reduces the domains of trh expression and expands
those of btd expression. (I,J) Restricted inactivation of the wg pathway
expands trh expression and reduces btd expression. All embryos are at
stage 11. (K) Detail of wg mutant at a somewhat later stage, showing
that the ectopic trh-expressing cells begin to invaginate. (L) Detail of an
embryo at germ band extension upon ectopic expression of wg at germ
band retraction, indicating that expansion of btd occurs only in part of
the embryonic ectoderm, while the segmental pattern persists in the
central nervous system. (M) Schematic representation of the role of wg
(transcribed in the yellow domain) in promoting appendage and
repressing tracheal fates.
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of the pdm/nubbin (nub) and apterous (ap) genes – that have wing-
specific functions in Drosophila – in a crustacean epipod (Averof
and Cohen, 1997). In fact, the Artemia nub and ap homologues are
expressed in the same epipod as trh and vvl, raising questions as to
the specific relationship of this epipod with either tracheae or wings.
A resolution to this conundrum becomes apparent when one
considers the different types of epipods/gills found in aquatic
arthropods, and their relative positions with respect to other parts of
the appendage.

The primary branches of arthropod appendages, the endopod/leg
and exopod, develop straddling the anteroposterior (AP)
compartment boundary, which corresponds to a widely conserved
patterning landmark in all arthropods (Martinez-Arias and
Lawrence, 1985; Patel et al., 1989a; Basler and Struhl, 1994;
Damen, 2002). Different types of epipods/gills, however, differ in
their position with respect to this boundary. For example, in the
thoracic appendages of the crayfish, some epipods develop spanning
the AP boundary [visualized by engrailed (en) expression running
across the epipod], whereas others develop exclusively from anterior
cells (with no en expression; Fig. 4F). Given that wing primordia
comprise cells from both the anterior and posterior compartments,
wings probably derived from structures that were straddling the AP
boundary. Conversely, given that tracheal primordia arise
exclusively from cells of the anterior compartment (anterior to en
and even wg-expressing cells) (de Celis et al., 1995), it seems
probable that tracheal cells evolved from a population of cells that
was located in the anterior compartment. In this respect, it is
interesting to note that the former type of epipods express nub,
whereas the latter do not (Fig. 4G).

In summary, we would like to suggest that the ancestors of
arthropods had specific areas on the surface of their body that were
specialized for osmoregulation and gas exchange. Homologues of
trh and vvl were probably expressed in all of these cells and played

a role in their specification, differentiation or function. Some of these
structures were probably associated with appendages, in the form of
epipods/gills or other types of respiratory surfaces. A particular type
of gill, straddling the AP compartment boundary, is likely to have
given rise to wings (Averof and Cohen, 1997), whereas respiratory
surfaces arising from anterior cells only may have given rise to the
tracheal system of insects. Confirmation of this hypothetical
scenario may ultimately come from the discovery of new fossils,
capturing intermediate states in the transition of insects from an
aquatic to a terrestrial lifestyle.
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